Publications
Published: 24 November 2021
Mycorrhizal symbiosis balances rootstock‑mediated growth‑defence
tradeoffs
It is well known that AM symbiosis provides several ecosystem services leading to plant adaptation in different environmen-tal conditions and positively affects physiological and production features. Although beneficial effects from grapevine and AM fungi interactions have been reported, the impact on growth-defence tradeoff features has still to be elucidated. In this study, the potential benefits of an inoculum formed by two AM fungal species, with or without a monosaccharide addition, were evaluated on young grapevine cuttings grafted onto 1103P and SO4 rootstocks. Inoculated and non-inoculated plants were maintained in potted vineyard substrate under greenhouse conditions for 3 months. Here, agronomic features were combined with biochemical and molecular techniques to assess the influence of the different treatments. Despite the opposite behaviour of the two selected rootstocks, in AM samples, the evaluation of gene expression, agronomic traits and metabolites production revealed an involvement of the whole root microbiome in the growth-defence tradeoff balancing. Noteworthy, we showed that rootstock genotypes and treatments shaped the root-associated microbes, stimulating plant growth and defence pathways. Progresses in this field would open new perspectives, enabling the application of AMF or their inducers to achieve a more sustainable agriculture also in light of the ongoing climate change.
Published: 19 January 2022
Abiotic Stress and Belowground Microbiome: The Potential of Omics Approaches
Nowadays, the worldwide agriculture is experiencing a transition process toward more sustainable production, which requires the reduction of chemical inputs and the preservation of microbiomes’ richness and biodiversity. Plants are no longer considered as standalone entities, and the future of agriculture should be grounded on the study of plant-associated microorganisms and all their potentiality. Moreover, due to the climate change scenario and the resulting rising incidence of abiotic stresses, an innovative and environmentally friendly technique in agroecosystem management is required to support plants in facing hostile environments. Plant-associated microorganisms have shown a great attitude as a promising tool to improve agriculture sustainability and to deal with harsh environments. Several studies were carried out in recent years looking for some beneficial plant-associated microbes and, on the basis of them, it is evident that Actinomycetes and arbuscular mycorrhizal fungi (AMF) have shown a considerable number of positive effects on plants’ fitness and health. Given the potential of these microorganisms and the effects of climate change, this review will be focused on their ability to support the plant during the interaction with abiotic stresses and on multi-omics techniques which can support researchers in unearthing the hidden world of plant–microbiome interactions. These associated microorganisms can increase plants’ endurance of abiotic stresses through several mechanisms, such as growth-promoting traits or priming-mediated stress tolerance. Using a multi-omics approach, it will be possible to deepen these mechanisms and the dynamic of belowground microbiomes, gaining fundamental information to exploit them as staunch allies and innovative weapons against crop abiotic enemies threatening crops in the ongoing global climate change context.
Published: 19 January 2022
Novel sustainable strategies to control
Plasmopara viticola in grapevine unveil
new insights on priming responses and
arthropods ecology
BACKGROUND: Reduction of fungicide consumption in agriculture is globally recognized as a priority. Government authorities are fostering research to achieve a reduction of risks associated with conventional pesticides and promoting the development of sustainable alternatives. To address these issues, in the present study, alternative protocols for the control of downy mildew infection in grapevine were compared to the standard protocol. In the first protocol, only resistance inducers were used, com-prising a single formulation with Acibenzolar S-methyl, laminarin and disodium-phosphonate. The second and third protocols followed the standard protocol but substituted phosphonates with phosphorus pentoxide and Ecklonia maxima extract.
RESULTS: The results showed that at veraison downy mildew incidence and severity in all tested protocols were significantly reduced compared to nontreated controls on both canopy and bunches. Expression analysis of key genes involved in plant stress response, indicated that the two protocols for phosphites substitution induced a remodulation of salicylic acid (SA) and jasmonic acid (JA), with positive impact on yields. Analysis of the first protocol revealed that the primed state induced a short delay in bunch ripening, with a shift of carbohydrate metabolism to boost the plant defences, involving an upregulation of defence related-gene, SAR response and a decreased ROS detoxification. Additionally, analysis on the arthropods populations, in parallel with the positive results achieved using alternatives to conventional fungicides, were enriched by those showing the potential of naturally occurring predators of spider mites.
CONCLUSION: This study provides practical solutions to reduce the environmental impact of treatments for the control downy mildew in viticulture.